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Statistical dynamics of two-dimensional flow 
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The equilibrium statistical mechanics of inviscid two-dimensional flow are 
re-examined both for a continuum truncated a t  a top wavenumber and for a 
system of discrete vortices. I n  both cases, there are negative-temperature equi- 
libria for finite flows. But for spatially infinite flows, there are only positive- 
temperature equilibria, and both the continuum and discrete system exhibit 
proper, extensive, thermodynamic limits a t  all realizable values of the energy 
and enstrophy density. The negative-temperature behaviours of the continuum 
and discrete system are semi-quantitatively the same, except for a superconden- 
sation phenomenon in the discrete case a t  the smallest realizable values of 
negative temperature. The supercondensed states have very large energy and in 
them all vortex cores of the same sign are clumped within an area small eompared 
with the mean area per vortex. The approach of the continuum system to 
absolute equilibrium by enstrophy cascade to high wavenumbers and energy 
cascade to low wavenumbers is examined. It is argued that the enstrophy cas- 
cade is closely analogous to distortion of a passive scalar field by straining 
of large spatial scale. This implies that high intermittency of spatial derivatives 
of the vorticity field can develop but that there is no associated change in the 
previously proposed log-corrected k-l enstrophy spectrum law. On the other 
hand, intermittency build-up in the downward energy cascade can result in a 
change of the exponent in the energy spectrum law to a negative value of smaller 
magnitude than +. Intermittency effects in the non-equilibrium energy cascade 
seem a more plausible explanation for vortex clumping observed in recent com- 
puter experiments than do the spatially smooth condensation phenomena 
associated with the negative-temperature absolute equilibria. 

1. Introduction 
The statistical mechanics of two-dimensional flow were first discussed by 

Onsager (1949), who treated an assemblage of discrete point vortices by means 
of a Hamiltonian formalism. Onsager found that absolute equilibrium ensembles 
of high kinetic energy exhibited negative temperatures and corresponded to  
clumping of like-signed vortices. The equilibrium statistical mechanics of two- 
dimensional flow with a continuous vorticity distribution were treated by 
Kraichnan ( 1967). Again, the absolute equilibrium states of high relative kinetic 
energy corresponded to negative temperatures. The equilibrium statistics were 
found to  be closely analogous to those of a perfect boson gas, with the particle 
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number and kinetic energy in the boson gas playing the respective roles of kinetic 
energy and enstrophy (integrated squared vorticity) in the fluid. Both systems 
exhibited condensed states with singularly large excitation of the modes of lowest 
wavenumber. 

I n  inviscid two-dimensional flow, the vorticity of each fluid element is a 
constant of motion. One consequence is that, in addition to kinetic energy, 
enstrophy is an inviscid constant of motion. This has profound effects on non- 
equilibrium as well as equilibrium statistics. Fjrartoft (1953) pointed out that, 
in contrast to three-dimensional flow, the two constants of motion implied that 
any transfer of energy to higher wavenumbers must be accompanied by a 
bigger transfer to lower wavenumbers. Elaboration of these considerations 
led Batchelor (1969), Kraichnan (1967) and Leith (1968) to propose a dual 
inertial-cascade mechanism for two-dimensional turbulence. I n  this picture, 
energy cascaded from input wavenumbers to lower wavenumbers through an 
inertial range with energy spectrum 

E(k)  = C&k-% 

and enstrophy cascaded to higher wavenumbers through an inertial range of 
the form 

E(k)  = C’$k3, (1.2) 

where C and C‘ are dimensionless constants, 8 is the rate of energy cascade 
and 7 is the rate of enstrophy cascade, both per unit mass. Corrections for non- 
local interactions in the wavenumber space modify (1.2) to the form (Kraichnan 
1971; Leith & Kraichnan 1972) 

where k, is characteristic of the input wavenumbers. 
I n  the past few years there has been a renewed interest in two-dimensional 

turbulence, in part because it is now possible to do direct computer simulations 
(Deem & Zabusky 1971; Lilly 1971, 1972a, 6 ;  Fox & Orszag 1973; Herring et al. 
1974) and in part because of analogies with and applications to meteorological 
flows (Charney & Stern 1962) and plasma dynamics. The relation to plasma 
physics lies in the fact that the dynamical equations for an assemblage of point 
vortices are identical with those for charge filaments in the so-called guiding- 
centre plasma. The latter is a plasma in which charge filaments aligned parallel 
to a uniform magnetic field move perpendicular to the field under their mutual 
electric field. Detailed investigations of the equilibrium statistical mechanics of 
the guiding-centre plasma, starting from Onsager’s formulation and giving 
special emphasis to the negative-temperature states, have been reported by Joyce 
& Montgomery (1973), Edwards & Taylor (1974) and others. 

The present paper has two principal purposes. The fist is to present in some 
detail the equilibrium statistical mechanics of continuum two-dimensional 
flow and point out the correspondence between continuum results and those for 
discrete-vortex systems. A particular objective is to resolve some confusion 
about the nature and significance of the negative-temperature states which we 



Statistical dynamics of two-dimensional flow 157 

feel has appeared in the literature. The second main purpose is to examine the 
effect on the proposed inertial-range spectra (1.1) and (1.3) of intermittency 
phenomena of the sort which, in three dimensions, are widely thought to modify 
the Kolmogorov inertial-range spectrum. 

Kolmogorov (1962) and Oboukhov ( 1962) suggested that spatial intermittency 
which increased in a self-similar fashion with decreasing scale size should alter 
the exponent in (1.1) to the form - 5 - ,u, where ,u > 0, in three dimensions. Since 
then there has been a substantial amount of experimental and qualitative 
theoretical support for this hypothesis. A critical review of the theoretical 
arguments was attempted by Kraichnan ( 1 9 7 4 ~ ) .  This raises the question of 
whether similar effects should make the exponent in (1.2) or (1.3) more negative 
in two-dimensional enstrophy cascade and whether there is a corresponding modi- 
fication of (1.1) in two dimensions. 

In  the present paper, we attack these questions by considering the energy 
and enstrophy cascades in the context of the broader problem of the relaxation 
of the two-dimensional flow system towards absolute statistical equilibrium. 
We shall also make use of analogies between enstrophy cascade and the distortion 
of a convected passive scalar field. As part of the investigation of intermittency 
effects, we shall examine the suggestion by Saffman (1971) that intermittency of 
the smalI scales takes an extreme form in which the major contribution to the 
mean-square vorticity gradient comes from boundary layers betyeen large-scale 
eddies. This would make E(k)  proportional to lc4 instead of taking the form (1.3). 
A central question in the overall problem of relaxation towards absolute statis- 
tical equilibrium is the nature of the constraints imposed by the existence of an 
infinity of local inviscid constants of motion: the vorticity of each fluid element. 

2. The absolute equilibrium distributions 

the form 
If the velocity field in a cyclic box of period D is expanded in a Fourier series of 

Gi(x, t) = 2 ui(k, t )  exp (ik. x), (2.1) 
k 

the incompressible Navier-Stokes equation takes the form 

Here the sums are over all wave vectors allowed by the cyclic boundary con- 
ditions, v is the kinematic viscosity and P,,(k) is the transverse projection opera- 
tor which embodies the pressure forces. 

The total energy (divided by density) and total enstrophy in the cyclic box are 

B 2 x  (u(k)(2 = B2& 
k 

and 

respectively. Here enstrophy is defined as half the integrated squared vorticity 
and lu(k) [ 2denotes u,(k) @(k). If v = 0, bothenergy and enstrophy are conserved 
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and, moreover, they are conserved individually by each triad of interacting wave 
vectors { & k, & p, k q} (cf. Kraichnan 1973, $3) .  The detailed conservation 
properties imply that energy and enstrophy are inviscidly conserved if the 
dynamical system is truncated by removing from all the sums every wave vector 
k, p or q whose magnitude does not lie between a lower cut-off k, and an upper 

A further property when v = 0 is that the motion of phase points, and of 
hyperplane projections of this motion, is divergence free if a phase space is 
constructed whose Cartesian co-ordinates are real and imaginary parts of the 
vector components of the Fourier amplitudes (Lee 1952). Thus, 

(2.3) 

where u,(k) = a,(k) +ib,(k).? This detailed Liouville theorem continues to hold 
if the inviscid system is truncated a t  the limits k, and kmax. It then follows th2t 
any probability density function in thehphase space which is a function P(8, a) 
of only the constants of motion and R is itself time-invariant. This result is an 
immediate consequence of (2.3), the continuity equation 

(2.4) 

cut-off kmax. 

aui(k)/aai(k) + ab,(k)/ab,(k) = 0, 

aP/at + C a/hi(k) [&(k) aP/&,(k)] = 0, 
k 

and the inviscid identities? 
A 

I: &(k) a$/au,(k) = 0, zi,(k) aQ/8ui(k) = 0, (2.5) 
k k 

A 

which express the fact that 8 and are constants of motion. 
Two distributions of special importance are (in unnormalized form) 

and 

P = exp(-ae-BB) 

P = &@-E)d(h-O).  

Here (2.6) generalizes the canonical distribution of ordinary Hamiltonian mech- 
anics. Also, it is homologous to the grand canonical ensemble of a free-boson gas 
in the classical-field limit, as we shall discuss later. The special property of (2.6) 
is that it  is stable under arbitrary intercouplings of the systems of the ensemble, 
provided that these couplings preserve the form and constancy of both 8 and 
(Kraichnan 1959). Thus (2.6) is a thermal equilibrium ensemble, with a playing 
the role of inverse temperature and p acting as a corresponding thermodynamic 
potential (which we shall resist naming) for enstrophy. Alternatively, in the 
boson analogy, a/,B and ,B are the chemical potential and inverse temperature, 
respectively. The distribution (2.7) is appropriate to an isolated system of energy 
E and enstrophy a, under the assumption that it exhibits suitable ergodic proper- 
ties. We shall first discuss (2.6). 

A 

Equation (2.6) yields the mean modal intensity spectrum 

U ( k )  = +(/3k"a)-', (2.8) 

where U ( k )  = (qW2 ("k) 19 (2.9) 

t The reality condition ur(k) = ui( - k) requires that, in the partial differentiations of 
(2.3)-(2.5), the independent variables be taken as either a,(k) and b,(k)  for k in a half-space 
or u,(k) for all k. 
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and ( ) denotes a normalized average over P. The usual isotropic energy spec- 
trum is given by E(k)  = nkU(k) ,  provided that k, is high enough that the modes 
are dense (mode spacing small compared with k )  over the entirz spectrum. In 
that case, the mean energy E = (B) and mean enstrophy R = (Q) obtained by 
integrating over (2 .8 )  are 

E = (7~/4P)ln[(a +Pkkax) / (a+Pki ) I ,  (2 .10)  

(2 .11)  Q = ( 7 ~ / 4 P )  (&%ax-@)-  (51ra/4P2)1n[(a+Pk~~x) / (a+Pk~)I .  

These thermal equilibrium formulae exhibit three regimes, distinguished 
by the signs of a and j3 and by the value of k2, = R/E (Kraichnan 1967). Let 

2 - 1 k 2  ka - rnax-ki)/ln (kmax/ko), k: = H k L a x + k g ) -  

The regimes are then 

(I) kg < k2, < k t ,  P > 0, -Pk; < a < 0; (2 .12 )  

(11) k t  < k2, < k;, a > 0, P > 0; (2 .13 )  

(111) k; < k: < kkax, a > 0, -a < PkL,, < 0. (2 .14)  

Regime I1 is the most ordinary one. In  it, U ( k )  decreases monotonically with 
increasing k .  It is bounded by the energy-equipartition state ,8 = 0, k,  = kb 
and the enstrophy equipartition state a = 0, k, = ka . Regimes I and I11 feature 
negative values of a and /3, respectively. They are more unusual-and are the 
ones which have led to perplexity and confusion in the literature. Cook & Taylor 
(1972)  and others have suggested that the negative-temperature states of 
regime I are not true equilibrium states to which systems can relax. In  answer 
t o  this, we have already noted that all three regimes are not only equilibria 
in the sense that (2 .6 )  is time invariant but that these equilibria are stable under 
arbitrary couplings that preserve the constants of motion. The important thing 
here is that there are two constants of motion. Neither positive-temperature 
nor negative-temperature equilibria survive coupling to a reservoir in such a 
way that both constants are not conserved. If the reservoir conserves only 
energy, then the only distribution of the form (2 .6 )  which can survive coupling 
is the energy-equipartition state ~3 = 0. 

Fox & Orszag (1973)  have pointed out that there is no discontinuous change 
of property of any kind in crossing the boundaries between the regimes. This 
follows immediately from the fact that (2 .6 )  is normalizable and an analytic 
function of a and P over all three regimes. Regimes I and I11 are most interesting 
in the limits k,  + k, and k,  + kma, and in the limits k, + 0 and kma, + co for 
fixed k,. If k,  - k, < k,, then a z - Pkg and U ( k )  exhibits a sharp peak a t  k = k,. 
As the limit k,  = k, is approached, the fraction of the total energy contained in 
this peak approaches unity. Complementary behaviour occurs at  the opposite 
limit. If kmax- k ,  < k,,,, then Pkk,, z -a and U ( k )  exhibits a sharp peak at  
k,,,. As the limit k,  = k,,, is approached, the fraction of the total enstrophy 
contained in this peak approaches unity. 

Now let k, be fixed while k,,, -+ 00 with given k,. It follows readily from (2 .10)  
and(2.11)that 

P + nkkax/2Q, a/P+ + kL,,exp ( -kLax/k:)- (2 .15)  
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As the limit is approached, a! becomes negative whatever the values of k, and 
k,. On the other hand, if k, -+ 0 with fixed k, and k,,,, a! and p are both positive 
as the limit is approached. If, in addition, k,,, 9 k,, then ( 2 . 1 5 )  is valid in this 
case also. Thus negative-temperature equilibrium states occur only when the 
lowest admitted wavenumber k, is non-zero. 

We have so far dealt only with dense mode distributions so that k in ( 2 . 8 )  
can be treated as a continuous variable. This implicitly assumes that the cyclic 
box size D -+ co before k, -+ 0. A more physically relevant situation is to take 
k, = 2 n / D .  In  this case the low-lying modes cannot be considered dense, and the 
structure of the negative-a states is affected. As k, -+ k, a t  fixed k, and k,,,, the 
excitation in the modes of wavenumber k, increases such that, as the limit is 
approached, these modes carry most of the kinetic energy. In  the limit, only 
these modes are excited. As D -+ 00 (k,-+O) at fixed k, and k,,,, again a and 
both are positive as the limit is approached. The negative-temperature states 
exist only for a finite fluid and are absent for an infinite one. 

In  visualizing the negative-a states, it is important to realize that the con- 
densation of kinetic energy affects only modes of wavenumber k, in the case 
where ko = 2 n / D  and k, -  k, < k,. For k = Zk,, the denominator of ( 2 . 8 )  already 
is insignificantly different from what it would be with a = 0. If k, - k, N k,, 
the energy condensation is unimportant even a t  k,. Thus the condensed states 
do not involve an intermittent spatial distribution of big vortiees placed or 
moving a t  random in the fluid. They differ from positive-energy states only in 
the spatially smooth excitation of the lowest modes to high levels. The stream 
function for this excitation has the general form 

1c. = a cos [k,(x - xO)l + b cos [k,(y - yO)l, (2.16) 

where a and b are coefficients, x and y are co-ordinates in the plane of the flow 
and x, and yo define an origin which may be anywhere in the cyclic cell. If a = b ,  
this motion consists of a single pair of counter-rotating vortices per cell. Note 
that uniform translational motion k = 0 is dynamically uncoupled from the 
modes k > 0 in the sense that k = 0 motion is never excited if it  is not present 
initially. We therefore exclude it completely. 

The equilibrium distributions are essentially unchanged if the cyclic boundaries 
are replaced by rigid, no-slip boundaries and the square is replaced by an arbi- 
trary boundary shape. The general case can be formulated by expanding the 
velocity field in eigenfunctions of V44 = A4$. For rectangular boundaries with 
cyclic or slip conditions, this reduces to a Fourier expansion, as in (2.1). For 
rectangular boundaries with no-slip conditions, the appropriate expansion 
involves both Fourier modes and the modified Fourier modes introduced by 
Chandrasekhar & Reid (1957). Thus, 

cz(x, Y) = C anrnCw(~) c ~ ( Y ) ,  ~ J z ,  Y )  = X bnrncn(x)crn(~) ,  (2 .17)  

where the C, are Chandrasekhar-Reid functions and the cn are ordinary Fourier 
functions. Both kinetic energy and enstrophy are a sum of squares of the a and b 
coefficients and the equilibrium law takes a form closely analogous to (Z.S), 
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with similar behaviour in the several limiting cases considered above. In  con- 
trast to the case of cyclic boundary conditions, the equilibrium distributions are, 
of course, not statistically homogeneous. 

The generalized microcanonical distribution ( 2 . 7 )  can give averages appre- 
ciably different from those of (2.6) only when there is significant excitation in 
regions of k space where the modes are not dense; this means the negative-a 
distributions with k, - k,. Even in this case, however, the differences do not seem 
crucial. The distribution (2.6) can be obtained by averaging (2.7) over values of 
E and a. When the resultant values of a and /? yield k; - k$ < k$, then Q/E M k: 
for almost all the distributions (2.6) contributing to this average, since Q/E < kg 
is impossible. Thus (2.7) exhibits the same condensation of kinetic energy into 
k, as (2.6), when k, + k,. In  the discrete-mode (finite box) case where k, = 2.rr/D, 
both distributions yield a singular concentration of kinetic energy into k,, in the 
limit k, + k,, while the excitation of the remaining modes exhibits near equi- 
partition of enstrophy. 

The expressions for energy and enstrophy given after ( 2 . 2 )  are identical in form 
with those for particle number and kinetic energy, respectively, in the classical- 
field limit of a quantized boson field, where each degree of freedom is typically 
excited by many quanta. Consequently there is an exact correspondence be- 
tween the equilibrium statistics discussed above and those of the boson field, 
provided that the latter is truncated a t  wavenumbers k, and k,,,. The parameter 
p in the expressions above represents inverse temperature in the boson problem, 
while a//? is the chemical potential. In  particular, the condensation of kinetic 
energy into k, discussed above corresponds to the Einstein-Bose condensation 
of particles into the ground state in a two-dimensional free-boson gas of finite 
size. I n  three dimensions, but not in two, the Einstein-Bose condensation occurs 
in the infinite gas also. 

There are, however, two important differences between the two-dimensional 
inviscid Navier-Stokes fluid and the two-dimensional free-boson gas. In  the 
Navier-Stokes case, the degrees of freedom are coupled (nonlinearly) by the 
equations of motion even though the energy is a simple sum of squares. Con- 
sequently, the Navier-Stokes fluid can relax towards equilibrium, while the 
perfect boson gas can do so only with the introduction of extra couplings. The 
second difference is that in a real Navier-Stokes fluid the artificial cut-off a t  
k,,, is replaced by the dissipative effects of viscosity, while in the boson case the 
effective cut-off is provided by non-dissipative quantum effects. Viscosity 
destroys the absolute equilibria while the quantum effects only modify the form 
of the equilibria. 

3. Relation between continuous and discrete vorticity 
Onsager (1 949) initiated the statistical-mechanical study of the system 

of N isolated vortices in an inviscid two-dimensional flow. If the vortices are 
point vortices, their kinetic energy of interaction may be written in the Hamil- 

(3.1) 
tonian form 

H = - (27r - lp  c qiqj1n (%j/%), 
i>j 

F L M  67 I1 
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where qi is the circulation about the i th vortex, rii is the distance between the 
i th andjth vortices, p is the density of the fluid (mass/area) and r,, is an arbitrary 
length which gives a zero level to H .  The Hamiltonian equations are 

dZi/dt = aH/aiji, diji/dt = -aH/aZi, (3.2) 

where Xi = (pqi)&xi, iji = (pqi)* yi and (xi, y i )  are the Cartesian co-ordinates of the 
i th vortex. 

Equation (3.1) is the Hamiltonian for an infinite fluid. For fluid in a cyclic 
box of side D, the appropriate form is 

H = P D - ~  C Zqiqik2exp(ik.r i i ) ,  (3.3) 
i z j  k 

where all allowed k (k > 0 )  are included. If the vorticity field G(x), which here 
has the form 

O(x)  = C S(x-ri)qi, (3.4) 
i 

is expanded in the form 
G(x)  = xw(k)exp( ik .x) ,  

k 
(3.5) 

then o( k) = D-2 C qi exp ( - ik. ri) (3.6) 
i 

is a collective co-ordinate for the vortex system (ri is the position-(xi, yi) of the 
i th vortex). The Hamiltonian may be rewritten as 

where the sum over i represents the subtraction of the self-energy of the vortices 
and arises from the exclusion of i = j in (3.3).  

The amplitude w(k), which is a pseudoscalar in two dimensions, is related to 
u,(k) by 

w(k)  = ieiikiui(k), u,(k) = ieijkjk2w(k), (3.8) 

where eii is the alternating matrix (ell = eZ2 = 0, e12 = - E ~ ~  = 1) .  Hence the 
energy expression for the continuous vorticity distribution, given after (2.2), may 
be rewritten in precisely the form (3.7), but without the self-energy subtraction. 
For the continuum, the total kinetic energy is the natural quantity and self- 
energy is not a well-defined concept. For both the continuum and discrete system, 
the total energy is formally given by 

& = i p D 2 C  k2(W(k)12. (3.9) 
k 

Physical intuition suggests that both the equilibrium and non-equilibrium 
behaviour of the continuum system should closely approximate that of the dis- 
crete system provided that two related conditions are fulfilled: first, that the con- 
tinuum is truncated a t  k,,, - ni, where n = N/D2 is the discrete-system number 
density, and second, that  close encounters (vortices much closer together than 
the mean spacing n-4) do not play a significant role. Under these conditions, 
both systems have approximately the same number of degrees of freedom, and 
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the singularly intermittent vorticity distribution of the discrete system plays no 
significant part; smearing of the vortex cores over a diameter n-t would not 
appreciably affect the w(k) for k < k,,, in the discrete system. A further implicit 
condition, since we are considering the reflexion-invariant ensembles with zero 
mean vorticity, is that all the Iqil are equal, with equal numbers of qi with plus 
and minus signs. 

The presumption of similar behaviour stated above can be precisely stated, 
without actually settling the real role played by close encounters, by truncating 
the discrete-system equations (3.3) and (3.7) a t  k,,, N nB also, thereby creating 
a Hamiltonian system with rigid vortex cores of effective widths - n-9. We 
then anticipate that the continuum absolute equilibrium results of $2, with 
k, = 2n/D, are accurate qualitative descriptions of the discrete-vortex equili- 
brium behaviour. Moreover, the correspondence should extend to more general 
k, values if a low wavenuniber cut-off a t  k, is made in (3.3) and (3.7). 

To formulate the correspondence in detail, we note that the typical value 
of G(x) in the truncated discrete system is qn = qkg,,, so that Q N q2n2. For 
any state of the continuum system where most of the enstrophy is in near equi- 
partition [almost all states and, in particular, the limits discussed in connexion 
with (2.15)], /3 - k&,,/Q, as in (2.15). Thus we make the choice /3 N l / (q2n)  to 
pick the appropriate continuum states. Moreover, the a: of $ 2  is related to the 
temperature T by a: = p/k,T, where Ic, is Boltzmann’s constant. With these 
relations noted, we anticipate that the dependence on temperature of the mean 
energy E = (B)/pD2 per unit mass is well approximated for the discrete system 
by (2.10). 

Particular important results which carry over (with ko = 2n/D) are (i) the 
existence of negative-T equilibria and associated condensation phenomena for 
finite D ;  (ii) the disappearance of the negative-T states for infinite D ;  (iii) the 
existence of a well-behaved, extensive, thermodynamic limit in which, as D --f CO, 

T approaches a finite positive limiting value for any given energy density E 
(provided that E sufficiently exceeds the minimum possible value L2/k&,x). 

Edwards & Taylor (1974) have concluded, on the contrary, that the discrete- 
vortex system does not yield extensive thermodynamic limits with k,  = 2n/D, 
whether or not it is truncated a t  k,,,. They ascribe this to the long-range nature 
of the ‘Coulomb potential ’ which appears in (3.3). We believe that this conclusion 
comes from a physically unjustifiable use of the self-energy subtraction. 

To see the physics most clearly, put the Fourier representation aside and 
regularize the singularities a t  short distances by supposing that each vortex of 
strength q has a core of radius a over which its vorticity is uniform. Consider an 
instantaneous state in which the vortices are placed completely a t  random in 
the volume D2, with number density n. Outside the core, the velocity field of 
each vortex falls off like lx-ri1-l, so that the self-energy of each vortex is 
proportional to In (Dla). Consequently, the total self-energy of all the vortices is - pq2N In (Dfa) and is not proportional to D as D --f co a t  fixed n. On the other 
hand, the physical observable is the total kinetic energy, which is the integrated 
square of the actual velocity field throughout the volume. This energy is propor- 
tional to  D as D increases a t  fixed n. The far velocity field induced by a, local 

11-2 
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group of vortices falls off faster than l / x  because of cancellations between 
plus and minus circulations. Since the total energy is proportional to D2 [it is 
N pq2nD2 In ( l / n h )  for the random state in question] while the self-energy is 
proportional to D2 In (Dla), the interaction energy must be negative and 
proportional to D21n (D/a )  as D --f co a t  fixed n. If one examined only the 
interaction energy, one would falsely conclude that this state is not properly 
extensive. 

The general thermal equilibrium state is more structured than the purely 
random configuration just discussed, but there is no escape from the same basic 
physics unless positive and negative vortices are highly segregated. But that 
corresponds to the negative-T states which disappear as D --f 00. It is simply 
inadmissible to subtract off the self-energy, as is done in forming (3.3), if depen- 
dence on D is to be examined. The self-energy per vortex depends on D so its 
subtraction is not a trivial resetting of the energy zero level. 

It is, however, possible to subtract OR consistently the infinite energy associ- 
ated with point vortices (a  -+ 0) while still retaining the essential dependence on 
D. This can be done, for example, by adding to (3.3) the modified self-energy 
term 

k’ 
(3.10) 

where k* is an arbitrary cut-off for which a natural choice would be k* = n). 
The energy H + HZ,, exhibits proper extensive behaviour. 

In  the context of the guiding-centre plasma, it should perhaps be emphasized 
that we are not talking about the self-energy of individual electrons. They are 
three-dimensional and their self-energy can safely be subtracted because it is 
independent of D as D --f m. The self-energy of present concern is, from the 
microscopic point of view, the interaction energy of the necessarily large number 
of electrons which make up a macroscopic charge filament of sufficient diameter 
and density that charge fluctuations within it are negligible. 

I n  support of some of the preceding arguments, we wish to point out that the 
continuum results do, in fact, agree with an approximate treatment of the dis- 
crete system by Taylor (1972), in which the self-energy is retained. Taylor trans- 
forms the configuration integral in the relevant structure function into an integral 
over the collective co-ordinates w(k), truncated a t  k,,, N n). This leads to  an 
explicit relation between T and E .  To see the correspondence with Taylor’sresult,, 
we may rewrite (2.10) as 

Taking P - l / (q2n)  and noting a = p /kB T 3s before, we find that (3.11) is identical 
with the final result [equation (S)] of Taylor’s paper, apart from normalization 
conventions and factors of 2 and 7~ which we have ignored in p. 

I n  a later and more detailed paper, Edwards & Taylor (1974) drop the self- 
energy. This gives cancellations a t  large k which permit them to get finite results 
with k,,, = co. Here, as we would anticipate from the preceding, they do not find 
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a proper thermodynamic limit for D --f 03 with k, = 2n/D. Although this result 
comes about solely from dropping the self-energy, it should be pointed out that 
the limit k,,, -+ 00 is inadmissible in their treatment. The approximate trans- 
formation t o  collective co-ordinates as new variables, which is the key to their 
evaluation of the relation between T and E,  can be justified only if k,,, - n3, 
so that the new variables are approximately as numerous as the old. 

It seems not unfair to say that any treatment which appeals to a truncated set 
of collective variables is a treatment of the discrete-vortex system in name 
only. Once the w(k) for k > I%,,, are discarded, the analysis does not retain 
sufficient information to distinguish concentrated vortices from a continuous 
vorticity distribution. I n  fact, the continuum analysis with k,,, - nh has just 
as much claim to represent the discrete-vortex system as does the truncated 
collective-variable analysis, and it has the advantage of leading immediately to 
very simple, exact results. 

We must now return to the matter of possible close encounters of the discrete 
vortices. They offer the only remaining mechanism of qualitatively different 
behaviour of the continuum and discrete system. It is clear from the preceding 
paragraph that analysis using truncated collective co-ordinates is no help here. 
However, considerable insight is provided by simple qualitative estimates of 
some a priori configuration probabilities and their associated energies in the 
canonical distribution. 

Consider point vortices and let N and D have large fixed values. Take first 
the possibility of collapse of the system into neutral vortex pairs (Hauge & 
Hemmer 1971). Simple combinatorics show that the a priori probability of all 
configurations in which each vortex is a member of a neutral pair a t  separation 
not exceeding a distance a 4 n-3 is N (a2n)JN, where we neglect factors of strength 
e-N and weaker. The total interaction energy for such a configuration is 

H - - pq2N In (Dla). 

Hence the product of the a priori probability and the factor exp ( - H/k,T)  is 

N 3 ~ ~ 2 ~ ~ ( ~ 2 ~ ) 3 ( 1 - a q ~ ) ’ ~ -  

where a = p /k ,T  and we use N / D 2  = n. The condition that this expression should 
not diverge as a -+ 0 is clearly aq2 < 1 or 

k,T > pq2, (3.12) 

if T > 0. Thus collapse into neutral pairs does not occur if T is negative or is 
positive and sufficiently large. 

This result has an interesting interpretation in terms of the correspondence 
between discrete and continuum systems. Taking kLaX - n and p - l/q2n 
as before, we find that aq2 = 1 corresponds to a - Pkf , ,  for the continuum. 
If c1 takes larger positive values, then (2.8) goes over from enstrophy equiparti- 
tion at the wavenumbers k - k,,, to energy equipartition a t  these wavenumbers. 
Thus (3.12) says that the energy-equipartition states a > /?kkax of the continuum 
are not accessible to the discrete system, because of pair collapse. 
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If, instead, we construct the a priori probability and Boltzmann factor for 
close approach of like-signed pairs, the only change is in the sign of the inter- 
action energy. Collapse now occurs if a < - q2 or 

0 > k,T> -pq2. (3.13) 

However, this condition appears to be empty because macroscopic condensation 
phenomena place stronger constraints on the negative-T regime. If, again, 
p - l/q2n and n = k& are used, a > -q-2 implies 0 > a > -pkLax for the 
negative-a continuum regime. But that regime already is constrained by the 
much stronger condition (2.12), with a = -pk i  corresponding to complete 
condensation into the mode k,. 

Our previous discussion shows that, if near encounters are excluded, the dis- 
crete system will show macroscopic condensation similar to that of the continuum 
for a z -pk,2. Without this exclusion, there is, in addition, the possibility 
of a more extreme behaviour which we may call supercondensation. This is a 
state in which all vortex cores of the same sign are within an indefinitely small 
distance a of each other. The apriori probability for such a state is 

- (a2/D2)N = (a2n/N)", 

while the interaction energy is -pN2q21n (Dla). Thus the product of the apriori 
probability and Boltzmann factor can be estimated as 

(N/a2n)-N-;a"%. 

The condition that this should not diverge as u + 0 is 

a > -2q-2/AT, (3.14) 

a result which clearly makes empty the condition a > - q-2 for stability t o  like- 
signed pair collapse. 

If kLax - n, /3 N 1/q2n and k, = 2n/D, then the most negative value of a per- 
mitted by (3.14) is - - p k i ,  the maximum negative value found in $ 2  for the 
continuum. It is not possible, without a more precise treatment of the con- 
figuration statistics, to decide whether the discrete-vortex system first exhibits 
the continuum-type condensation or the more extreme supercondensation as M: 
takes increasingly negative values (starting from zero) with fixed D, N and q. 
One possibility is the following. The continuum actually shows two stages of 
condensation as a+ -@,. In  the first, k2, - k;, a+/3kg is exponentially small, 
according to (2.15),  but most of the enstrophy still lies in the higher E where 
there is approximate enstrophy equipartition. I n  the second stage, k2, approaches 
kg so closely that most of the enstrophy, as well as most of the energy, lies in the 
peak a t  k,. It seems possible that the discrete system may also show a two-stage 
behaviour in which, first, a condensation like that of the continuum occurs, with 
macroscopic segregation of different-signed vortices. Here the veIocity field 
averaged over regions containing many vortices is concentrated in the continuum 
modes about k,, but the typical vortex spacing is still - n-3, giving a vorticity 
distribution that fluctuates on the scale n-8 not too differently from the way it 
does in the uncondensed states. The second stage would be supercondensation, 
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with a radically different vorticity fluctuation character and a total energy 
which displays an indefinite logarithmic increase as the supervortices become 
more concentrated. 

Whether or not the supercondensation is preceded by a stage of continuum- 
type condensation, its onset plausibly could consist of the formation of local 
supervortices, made of relatively few individuals, which could then coalesce to 
form supervortices of greater intensity, until the final stage of total coalescence 
is reached. 

A final point is that that supercondensation is an open possibility even for the 
distributed-core rigid-vortex system obtained by truncating (3.3) a t  k,,, N ni-. 
In  contrast to vortices in an actual fluid, which never overlap (in the absence 
of viscosity) if they do not initially, the vortices of this artificial Hamiltonian 
system can coincide. 

4. Relaxation towards equilibrium 
The inviscid equilibria of 3 2 are both exact and stable, but that does not neces- 

sarily imply that they are the final states of evolution from particular initial 
conditions. The equilibria of $ 2  might be forbidden because of additional con- 
stants of motion which we have not yet taken into account. There is also the 
question of the relevance of the finite-k,,, results to the eVolution of inviscid 
systems with kmax infinite. 

When k,,, is infinite, the vorticity of each fluid element is an inviscid constant 
of motion. This provides immediate constraints on the evolution of initial 
statistical distributions since it follows that the univariate vorticity distribution 
in x space is invariant. We shall make the hypothesis, in what follows, that the 
effect of detailed vorticity invariance on evolution is to produce a fine-graining 
of the vorticity field closely analogous to that of a passive scalar field convected 
by turbulence (Kraichnan 19743). I n  the absence of molecular diffusion, the 
scalar field amplitude is constant in every fluid element. But either a non-zero 
diffusivity or a cut-off a t  finite k,,, smears out the fine-graining of the scalar 
amplitude when the latter reaches small enough spatial scales. Detailed constancy 
of amplitude is lost and the remaining isolating constants of motion are the inte- 
grals, over space, of the scalar amplitude and its square (the latter only if the 
smearing is produced by finite k,,, rather than finite diffusivity). 

If the analogy is valid (we shall give supporting arguments but no proof), 
then detailed conservation of vorticity should not interfere with relaxation 
towards the equilibria of $ 2 except for fine-graining of the spatial distribution of 
vorticity. If the vorticity distribution is averaged over small distances, the 
relaxation of systems with infinite k,,, and with large finite k,,, should be 
equivalent. 

Consider, now, an initial state in which the velocity distribution is multivariate 
normal, with all excitation confined to a fairly narrow band about k,. Assume 
k, = 2n/D and let k, be sufficiently larger than k, that modes k 2 k, are dense and 
the initial distribution can be very close to isotropic. If k,,, 9 k,, then the dis- 
tribution of form (2.8) to which this initial state can relax is specified by (2.15). 
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It is easy to see, from (2.8), (2.10) and (2.15), that, even with k, 9 k,, all of the 
energy in the equilibrium distribution lies in the peak a t  k, if k,,, + 00. The 
enstrophy, on the other hand, is nearly in equipartition, with most of it in modes 
k N k,,,, because that is where most of the modes are. 

It should be stressed that even though all the energy is asymptotically in k,, 
the equilibrium distribution does not exhibit a high degree of clumping of like- 
signed vorticity. This is evident from the fact that the total enstrophy is Ekf, 
while that associated with k,, is Ek& which is much smaller according to our as- 
sumption k,  9 k,. Moreover, the initial state cannot evolve to a state exhibiting 
a high degree of such clumping, whether or not it evolves to our equilibrium. 
This follows directly from the conservation laws. The largest fraction of the initial 
enstrophy which can appear in like-signed vorticity clumps of scale k ,  without 
increasing the initial energy, is N (k/k1)2.  Clearly the states considered by Onsager 
(1949), in which the vorticity field is dominated by a few large eddies, cannot be 
reached from our initial state. This kind of limitation, was, in fact, explicitly 
recognized by Onsager in his paper. 

The fact that fluid elements with positively and negatively signed vorticity 
must be essentially uniformly distributed on spatial scales 2 k,l favours a 
picture in which enstrophy is transferred to high wavenumbers by a straining 
process analogous to the straining of small blobs of passive scalar by turbulence 
(Batchelor 1959; Kraichnsn 1974b). It works against the contrary picture 
proposed by Saffman (1971), in which the fine-scale vorticity structure is princip- 
ally associated with boundary layers between macro-eddies. No substantial 
fraction of the original vorticity can be concentrated into boundary layers 
occupying a small fraction of the fluid. Nor, since vorticity and straining are 
intimately related, can straining be especially strong in such boundary layers. 
Thus it is hard to see how the proposed boundary-layer mechanism can com- 
pete effectively with straining of small-scale vorticity fluctuations throughout 
the fluid volume. 

If the straining of small-scale vorticity fluctuations were exactly like that of a 
passive scalar, then the approach to equilibrium a t  high wavenumbers would 
involve enstrophy transfer through a range in which the enstrophy spectrum 
went as lc-l, like the analogous scalar spectrum, so that the energy spectrum 
E ( k )  went like k-3 (Batchelor 1969; Leith 1968; Kraichnan 1967). We have just 
seen that this analogy is not flawed by segregation of like-signed vorticity. 
However, there are two further defects. The scalar k-l range applies when the 
wavenumbers of the straining field are small compared with those of the strained 
scalar blobs. But in a k-l enstrophy range, each octave in wavenumber makes an 
equal contribution to the straining, assuming similarity of the statistical distribu- 
tions. This implies logarithmic corrections to the k-1 law (Kraichnan 1971; 
Leith & Kraichnan 1972). A more fundamental problem is that the vorticity field 
is not passive. It is functionally related to the velocity field and reacts upon it. 
We wish now to argue that this reaction has a negligible effect on the straining 
process in the asymptotic enstrophy cascade range. 

If a k-l-type enstrophy transfer range does develop, it carries enstrophy to 
higher k a t  a rate asymptotically independent of k as k + 00. If k,,, = CQ, we 
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anticipate that the k-l-type range would extend to ever-increasing k as time 
increases, so that the equilibrium enstrophy-equipartition state would never 
be achieved. On the other hand, for finite k,,, the enstrophy cascade should 
pump enstrophy to wavenumbers - k,,, and provide a mechanism whereby 
equilibrium eventually is achieved. After considering, in the next section, the 
reaction of small-scale vorticity on the velocity field, we shall return to the 
equilibrium-approach problem, taking up intermittency effects both in the 
enstrophy cascade and in the complementary cascade of energy from k - k, 
down to k,. 

5. Reaction of small-scale vorticity on the straining field 
A standard working hypothesis for three-dimensional turbulence is that small 

spatial scales react on larger scales like an effective eddy viscosity, augmenting 
molecular viscosity. Some supporting analytical evidence is provided by closure 
approximations of the direct-interaction family. These closures yield a rate of 
loss of energy from the larger scales that is proportional to the mean-square 
rate of strain associated with the larger scales and to an eddy viscosity which 
depends explicitly only on the small scales. The eddy viscosity is proportional 
to the total energy in the small scales (per unit mass) and to a characteristic 
dynamical time of the latter. The closure approximatiohs yield this picture 
exactly in the limit of very great scale separation and approximately for more 
moderate separations (Kraichnan 1966). 

The eddy-viscosity hypothesis clearly requires drastic revision for two- 
dimensional turbulence, since the asymptotic enstrophy-transferring inertial 
range (if it exists) involves a zero rate of energy transfer to smaller scales (higher 
wavenumbers). Consider a wavenumber k which lies within such an inertial 
range. Let T, ,(p) be the rate a t  which energy is transferred into a unit wave- 
number interval a t  p < k owing to interactions with all wavenumbers > k. 
Positive overall enstrophy transfer and zero overall energy transfer give the 
simultaneous conditions 

T, ,,(p) cannot be negative for all p < k, as would be anticipated by analogy with 
three-dimensional turbulence. If T, ,(p) is negative for p near the boundary at 
p = k, then, to satisfy (5.1), it must be positive for still smaller p .  This suggests 
that wavenumbers 2 k may exert a negative eddy viscosity on wavenumbers 

A negative eddy viscosity is further suggested by conservation requirements 
in the straining of small scales by much larger scales. We expect that the straining 
tends to stretch the small scales into thin structures thereby increasing their 
characteristic wavenumbers k .  But since vorticity must be conserved in the 
straining, and the ratio of energy to enstrophy is the straining implies a loss 
of energy by the small scales. By energy conservation, the lost energy must 
appear in the straining scales. Conservation could be satisfied if there were an 

P <  k. 
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eddy viscosity proportional, as in three dimensions, to the mean-square rate of 
strain in the large scales, the energy in the small scales and the characteristic 
dynamical time of the latter, but negative in sign. If the dynamics of the small 
scales are dominated by the straining, this characteristic dynamical time should 
be the reciprocal of the rate of strain itself. 

Further consideration, however, suggests that the numerical coefficient in the 
asymptotic eddy viscosity expression for p l k  + 0 may, in fact, vanish. This is 
because of a peculiarity of random straining that is unique to two dimensions. 
Returning to the passive-scalar example, consider the straining of little blobs 
of scalar by a large-scale, isotropic, statistically stationary straining field which 
is externally forced so as to vary very rapidly in time. Let the blobs have initially 
a many-period sinusoidal amplitude profile such that their initial spectrum peaks 
sharply a t  a wavenumber ki. Then the probability distribution of k ,  the wave- 
number of a blob a t  time t ,  is lognormal and the moments are 

((klk,)") = exp [(n + n2D-1) Bt] (5.2) 

(Kraichnan 1974b). Here D is the dimensionality and 

([au,(x, t)/axj] [au,(x, s)/axj]) ds, (5.3) 

where zci is the straining velocity. 
The right-hand side of (5.2) grows with t if n > 0. This is evidence that higher 

wavenumbers are produced. But since the straining is random, it also produces 
smaller wavenumbers with some probability, and the right-hand side of (5.2) 
also grows with t if n is sufficiently negative. Now consider n = - 2 .  For D = 3, 
the right-hand side of (5.2) shrinks with increasing t. But for D = 2, it is indepen- 
dent of t .  If the blobs were passively strained vorticity, then ( (k /k i ) -2 )  would 
measure the mean kinetic energy associated with the vorticity field. Thus, be- 
cause the flow is two-dimensional, rapid straining like that just described would 
not actually decrease the kinetic energy. There is just enough back transfer of 
enstrophy to Iower wavenumbers to balance the kinetic-energy reduction associ- 
ated with transfer into higher wavenumbers. This implies that the asymptotic 
negative eddy-viscosity coefficient for plk -+ 0 vanishes. 

Of course, it cannot be asserted from the above argument that the kinetic 
energy of a strained small-scale vorticity field also remains constant in the more 
realistic case of a straining field with finite correlation time, typically of the 
order of the eddy circulation time or, equivalently, the reciprocal rate of strain. 
According to the approximate closures of the direct-interaction family, the 
kinetic energy does stay constant in this case also, a result which will be pre- 
sented in another paper. But even if the negative eddy viscosity is non-zero, the 
reaction on the straining field should be negligible if the total kinetic energy of 
this field is large compared with that of the strained vorticity field. To see this, 
let up and p be the typical velocity and wavenumber of the straining field while 
vk and k are the corresponding quantities for the strained field. The typical eddy 
circulation time for the straining field is then (v,p)-l  and the typical rate of strain 
is v p p .  If the straining does produce a non-zero loss of kinetic energy from the 
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strained small scales, its rate per unit mass must have the magnitude (v,p) v:. 
This represents a gain per eddy circulation time for the straining field of v;. Thus 
the fractional gain is v ~ / v ~ ,  which goes to zero with vk/vp.  

6. Intermittency effects in the enstrophy cascade 
We wish now to discuss the build-up and consequences of possible intermit- 

tency in the enstrophy cascade under the assumption, supported in $ 5 ,  that the 
reaction of strained vorticity fluctuations on a straining field of much smaller 
wavenumber and much higher kinetic energy is negligible. Consider first a special 
case, for which the analogy with convection of a passive scalar seems unassail- 
able. Let the gravest modes k, be excited to a typical velocity vO by some kind of 
external forcing which makes the velocity field statistically stationary with 
correlation time 5 ( ~ , k , ) - ~ .  (This could be accomplished, for example, by adding 
to the Navier-Stokes equation both a random forcing term and an extra damping 
term for these modes.) Because both energy and enstrophy are conserved by the 
nonlinear terms, this velocity field cannot escape to higher wavenumbers. Now 
let additional forcing be added a t  a wavenumber k, % k, so that vorticity is 
pumped in, statistically isotropically and homogeneously, and a t  a statistically 
stationary rate small enough that the total kinetic energy pumped in a t  k, 
remains < vi  for a time % (v,k,)-l, and, moreover, the total enstrophy pumped in 
remains < vtkt  for this time. 

There is then a perfectly clean separation between strained and straining 
fields, negligible reaction on the straining field and nothing to flaw the corre- 
spondence with passive-scalar convection. Consequently, the same inter- 
mittency effects as these inferred for the passive-scalar case (Kraichnan 19743) 
must also arise for the enstrophy cascade to wavenumbers k > k,. These effects 
were found exactly for the case of a rapidly varying straining field (loc. cit. $$ 3, 4 
and 6). The results imply, first, that a region of k-l enstrophy spectrum (k3 
energy spectrum) develops for k > k, and that the top wavenumber of this 
range increases exponentially with t until wavenumbers are reached where viscous 
dissipation prevents further growth. If v = 0,  the range grows until k,,, is 
reached. At times before the viscous cut-off is reached, the intermittency of 
spatial derivatives of the enstrophy field grows rapidly with t. The growth is 
exponential, as measured by kurtoses, and the rate of growth increases with 
the order of the derivative. Contributions to these derivatives come principally 
from the roll-off region a t  the top of the growing k-l range. Intermittency in the 
k-l range proper, as measured by the statistics of voiticity differences across 
distances equal to the reciprocal of a wavenumber in the range, increases very 
slowly with growth of the range. 

In  the steady-state k-1 regime achieved after viscous effects are fully felt, 
intermittencies of the spatial derivatives of vorticity are much weaker, and 
grow less rapidly with the order of the derivative, than they would be in an 
inviscid k-l regime of the same extent in wavenumber. This is because the excita- 
tion falls much more sharply with increasing k in the dissipation range than it 
does in the roll-off region a t  the top of the inviscid k-l range. 
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All the above results, although obtained in exact analytical form only in the 
case of a very rapidly varying straining field, were found in the scalar investiga- 
tion to be qualitatively valid also in the case of a straining field whose correlation 
time is of the order of its eddy circulation time, provided that the time of evolu- 
tion is long compared with this correlation time. If the correlation time of the 
straining field is of the order of the reciprocal rate of strain, then, apart from 
viscous effects a t  high enough wavenumbers, the typical rate of strain gives the 
exponential growth rates for the top wavenumber of the k-1 range and for the 
build-up of intermittencies, to within numerical factors. For a straining field 
forced to vary very rapidly in time, these growth rates are instead given by the 
quantity a defined in (5.3). 

It should be emphasized that the univariate distribution of the vorticity 
field, in contrast to the univariate distributions of the spatial derivatives, does 
not become more intermittent as a result of the straining process, since the 
vorticity of each fluid element is an inviscid constant of motion. Changes in the 
univariate vorticity distribution can arise only from viscous effects. 

The intermittency build-up has no effect on the k-l spectrum law itself because 
the dynamics of the strained vorticity field are linear. The linearity implies that 
the equations for evolution of the spectrum involve only second-order moments 
of the vorticity field and decouple from those for higher-order moments. There 
is also no correction to the k-l law of the logarithmic kind displayed in (1.3). 
This is because our assumption of very weak excitation except a t  the lowest 
wavenumbers implies that the total contribution of the k-' range to the straining 
field is negligible. The absence of this correction is again associated with the 
linearity of the dynamics. 

Now consider the more physically relevant case in which there is no forced 
excitation at k,. Instead, take k, << k, << k,,, and let energy be fed in a t  k, 
by an isotropic, statistically steady forcing, starting from an initial state of 
zero excitation a t  all wavenumbers. I n  this case, the arguments of Kraichnan 
(1971) and Leith & Kraichnan (1972) suggest that the system seeks equilibrium 
by a transfer of kinetic energy to k > k, and of enstrophy to k > k,, the latter 
transfer proceeding by way of an inertial range of the form (1.3). This case differs 
from the one just considered in that the inertial range itself provides the straining 
field. The dynamics of st,raining in this range are t'hen not linear, and this is what 
leads to the logarithmic correction in (1.3). We wish now to examine the self- 
consistency of (1.3), and the associated dynamical picture, under intermittency 
effects. 

We shall start by recalling the physical reasoning which leads to the logarithmic 
correction. If the asymptotic spectrum had exactly the form (1.2), then the total 
enstrophy and, by inference, the mean-square rate of strain would diverge 
logarithmically with increases in the top wavenumber of the range. If k is a 
wavenumber well within the range, then cancellation effects over distances - k-I should reduce the effectiveness of strain-field components of wavenumbers 
> k in distorting structures of wavenumber k ,  with the result that the contri- 
bution of wavenumbers > k to enstrophy transfer a t  k converges even though 
the total mean-square rate of strain does not. However, we are left with an 
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effective mean-square rate of strain, acting a t  k ,  which increases like In (k lk , ) .  
The k-3 range then cannot survive because enstrophy transfer increases with k .  
The corrected equilibrium, in which transfer is independent of k ,  has the more 
steeply falling form (1.3).  The mean-square enstrophy in wavenumbers < k ,  and 
hence the effective rate of strain acting a t  k ,  is still a logarithmically increasing 
function of klk,, although a weaker one. 

If klk,  is very large the effective strain acting at  k will be dominated by wave- 
numbers < k ,  since such wavenumbers will comprise most of the logarithmic 
extent of the inertial range below k .  Hence the straining dynamics resemble those 
of the previous case, with the straining field concentrated at  k,, in the sense that 
they are non-local. We can again argue, although now not so unassailably, that 
the reaction of the strained structures of wavenumber k on the straining field is 
asymptotically negligible for typical k in a very long inertial range. Moreover, 
the effective straining field should exhibit substantial statistical independence 
among the various decades in wavenumber which contribute to it because each 
decade is connected by the constant-in-the-mean transfer rate to a different 
time of random input a t  k,. 

We have, then, all the ingredients for the build-up of intermittency effects 
qualitatively similar to those for the case of a random straining field concentrated 
at  k,. The key feature is that the dynamics still exhibit an effective linearity be- 
cause the strained flow structures of any given scale size in the- inertial range 
react negligibly on an effectively random straining field. Since the predicted 
intermittency is for vorticity derivatives and not for the vorticity field itself, an 
increase of intermittency with wavenumber should not substantially affect the 
statistics of the effective straining field and hence should not upset the spectrum 
law (1.3). While the increase ofintermittency parameters with the length of the 
range (1.3) should be qualitatively similar to that for a scalar field in the k-l 
range, these parameters should be even closer to those of a passive scalar strained 
by a random velocity field with spectrum (1.3). 

Now suppose that there is initial random excitation at  k = k,  but that the 
system evolves freely towards equilibrium thereafter, with no forcing. There 
appears to be no obvious inconsistency in the internal dynamics behaving as in 
the forced case. If so, there should be a similar growth of a log-corrected k-l 
range and a similar increase of intermittency with time, up to the time when the 
k-' range extends either to k,,, or to wavenumbers where viscosity is significant. 
The principal differences should be connected with the fact that the enstrophy 
in the present case is an inviscid constant of motion, instead of increasingly 
linearly with time. This implies that the effective rate of strain felt by a given 
wavenumber k in the k-l range should decrease with time in proportion to the 
logarithmic fraction of the range that lies below k .  Both E ( k )  and 7 in (1.3) should 
decrease with time. 

The arguments seem less compelling in this freely evolving case, however, 
because, in the absence of random forcing, there would appear to be more 
opportunity for correlations to build up between widely separated scales. We have 
no answer to this, except to say that it is unclear what form the correlations 
could take to spoil our conclusions. We have noted in $ 4  that the vorticity 
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cannot concentrate in small regions and so escape a straining field. This is because 
the vorticity of each fluid element is a constant of motion, and the fluid is incom- 
pressible. It therefore seems difficult to escape the straining of vorticity into 
smaller scales. Once vorticity enters these scales, its associated velocity field is 
bounded by the k-2 relation between kinetic energy and enstrophy, and it 
becomes hard to see how the small scales can react significantly upon the effec- 
tive straining field they experience. 

Suppose now that viscosity is zero and the behaviour argued above for the freely 
evolving system actually does occur. The growth of the k-l range would continue 
until the excitation reached k,,,. There would then presumably be a gradual 
approach towards the absolute equilibrium state in which the enstrophy is in 
equipartition. It seems plausible that the self-straining would continue to pump 
enstrophy towards Em,, until the equipartition level of excitation was reached at  
k - k,,, and that then the equipartition state would work down to lower wave- 
numbers. If all this is so, we have the paradox of an eventual Gaussian equilibrium 
state being reached through a transient phase in which intermittencies increase 
and reach strongly non-Gaussian levels if k,,, is large enough. In  the truncated 
system, constancy of vorticity in each fluid element breaks down when wave- 
numbers - k,,, are reached. The straining picture from which we inferred the 
increase of intermittency no longer is valid then, and there is the opportunity 
for relaxation of the intermittency and approach to the Gaussian statistics. 

7. The downward energy cascade 
The similarity state proposed by Batchelor (1969), Leith (1968) and Kraichnan 

(1  967) involves a cascade of energy to wavenumbers smaller than the input wave- 
number k, through a backward-transferring Kolmogorov range of the form ( I .  i), 
as well as the upward enstrophy cascade. I n  contrast to the enstrophy range, the 
dynamics of the k-5 range, if it does occur, are local in the sense that most of the 
effective strain acting a t  a given wavenumber in the range arises from wave- 
numbers of the same magnitude. The self-consistency arguments for this are the 
same in two as in three dimensions (Kraichnan 1967). It is then apriori plausible 
that intermittency effects can arise like those which probably affect the E-g  
range in three dimensions (Kraichnan 1 9 7 4 ~ ) .  In  the three-dimensional case, 
these intermittency effects increase the efficiency of cascade with each nominal 
cascade step. Since the rate of energy flow is constant through the range, this 
means that E ( k )  falls off more rapidly towards high k than (1. I ) .  If intermittency 
in the two-dimensional cascade gives a similar increase of efficiency with the 
number of cascade steps, then E ( k )  should fall below ( 1 . 1 )  towards lower k .  That 
is, the negative exponent in the power law for E(E) should have an absolute value 
smaller than 0. 

If intermittency does build up in the downward cascade of energy, this tran- 
sient, non-equilibrium phenomenon seems a more plausible explanation than the 
structure of the absolute equilibrium ensembles for the computer experiments 
reported by Joyce & Montgomery (1 973) and Edwards & Taylor (1  974). These 
experiments show clumping of like-signed vorticity on scales larger than the 
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input scale and smaller than the box size. We have noted that the conservation 
laws prohibit more than a small fraction of the initial vorticity from entering 
such clumps. But this does not outlaw them altogether, nor prevent them from 
representing a substantial fraction of the energy, in contrast to  the vorticity. 
It may be that such clumps are one physical expression of the tendency towards 
intermittency in the downward cascade that leads asymptotically to a modified 
- f law. On the other hand, the negative-temperature absolute equilibrium 
states involve an enhanced occupancy of the ground-state modes Ic,. This means 
a smooth distribution of velocity and would not appear to provide an explanation 
for the irregular clumping observed in the experiments. 
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